
Journal of  Statistical Physics, Vol. 22, No. 4, 1980 

Systematic Analysis of the Multivariate Master Equation 
for a ReactionlDiffusion System 

G. Nicol is  1 and M.  Malek-Mansour  1'2 

Received July 6, 1979; revised September 14, 1979 

The multivariate master equation for a reaction-diffusion system is analyzed 
using a singular perturbation approach. It is shown that in the vicinity of a 
bifurcation leading to two simultaneously stable steady states, the steady- 
state probability distribution reduces asymptotically to the exponential of 
the Landau-Ginzburg functional. On the other hand, for a system displaying 
quadratic nonlinearities and an absorbing state, critical behavior is ruled 
out. 
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instabilities; nonequilibrium phase transitions. 

1. I N T R O D U C T I O N  

Systems involving chemical reactions and diffusion give rise to a considerable 
varidty o f  solutions arising via a bifurcation mechanism far f rom thermo- 
dynamic equilibrium/1~ The simplest situation o f  this kind involves the first 
bifurcation f rom a uniform steady-state solution. As is well known,  it may  
lead either to spatially uniform multiple steady states or to symmetry  breaking 
associated with the emergence o f  spatial dissipative structures or o f  limit 
cycles. 

Several authors  have at tempted an analysis of  the fluctuations in the 
vicinity o f  these bifurcation phenomena/1,2~ Broadly speaking, these analyses 
can be classified into two different categories as follows. 

1.1. The Master  Equation Approach 

Let {ff~} denote the (macroscopically measured) concentrat ions o f  the 
active chemical intermediates. Assuming Fickian diffusion in a dilute mixture 
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and constant temperature throughout, the phenomenological evolution 
equations of these variables take the form 

~Xi/~t = V, ( .X"  1 . . . .  , .~;  A) + ~ V22, (1.1) 

The ~ are diffusion coefficients, v~ is the overall rate of change of :~, arising 
from the chemical reactions involving constituent i, and A stands for a set of 
parameters descriptive of the system (among which one may choose the 
bifurcation parameter). 

The main idea behind the master equation approach is to appeal explicitly 
to the chemical and diffusion mechanisms underlying Eq. (1.1) and to con- 
struct a Markov process in an appropriate phase space. The usual rules for 
constructing this process are to model diffusion as a random walk between 
adjacent spatial cells r, and to view chemical reactions as birth and death 
processes corresponding to the appearance or disappearance of a small num- 
ber of molecules (usually one) at a time. One writes in this way the multivariate 
master equation: 

dP({X,r}, t) 
dt 

D~ 
+ ~ 2--d [(X,r + 1)P(X~,r+r -- 1, X~r + l, {X(r}, t) 

- X, rB({X,r}, t)]} (1.2) 

{X,r} denotes the number of particles of species i in cell r, the D~ are the 
diffusion rates across cells, d is the spatial dimensionality, X denotes the first 
neighbors of cell r, and W is the transition probability per unit time for the 
chemical processes. Among the constraints that enable us to assign a unique 
structure to W, we cite the requirement that at thermodynamic equilibrium 
P({X~r}, t) should become multi-Poissonian (multinomial in a closed system), 
and that one should recover Eq. (1.1) as the time evolution of the average 
value in the absence of bifurcation. 

Equation (1.2) confronts us with an extremely complex problem. For 
this reason, the only results obtained so far are based either on mean-field 
hypotheses, neglecting the effect of spatial fluctuations, (s-s) or on truncation 
of the hierarchy of moment equations to second order. (1'0-11) In either case, 
one predicts classical values of the critical exponents describing the divergence 
of the variance and of the correlation length on approaching the bifurcation 
point. 

Despite the absence of a clear-cut perturbation parameter associated with 
the above approximations, certain authors (11,12) attempted to determine 
critical dimensionalities beyond which mean-field theories or truncation 
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procedures would be qualitatively correct. As we see later, however, in the 
vicinity of the bifurcation point the various parts of Eq. (1.2) are so intricately 
coupled that all straightforward perturbation expansions are bound to fail. 

1.2. The Critical Dynamics Approach 

The rather unsatisfactory status of the above analyses prompted some 
authors (13-15~ to suggest a different approach, based on the use of renormaliza- 
tion group techniques. These methods amount to adding appropriately corre- 
lated Langevin forces (2'16~ to the right-hand sides of the balance equations 
(l.1) and analyzing diagrammatically the resulting stochastic differential 
equations. For systems involving multiple steady states without symmetry 
breaking they often lead to time-dependent Landau-Ginzburg models. Hence, 
one obtains nonclassical exponents describing the law of divergence of the 
various quantities as well as critical dimensionalities higher than d = 3. These 
results rest entirely on the structure of the nonlinear equations (1.1), and are 
otherwise independent of the more detailed nature of the chemical system 
under consideration. 

We believe that a more satisfactory approach to fluctuations in reaction- 
diffusion systems should utilize, at least at the beginning of the analysis, the 
maximum amount of specific information pertaining to the system. Such is 
the case of the multivariate master equation (1.2). It may happen, of course, 
that in the vicinity of bifurcation, much of this information becomes irrelevant. 
One could thus be led to results similar to the renormalization group results. 
However, instead of postulating a priori a universal behavior, one would have 
information on the conditions making such a universality possible. 

Naturally, such a program implies that one can set up a systematic 
analysis of the master equation (1.2). This is the object of the present paper, 
for the particular family of systems admitting multiple steady-state transitions 
without symmetry-breaking. In Section 2 we introduce the Schl6gl model, 
which is the prototype of such systems, and write down the multivariate 
master equation for an arbitrary dimensionality. Section 3 is devoted to a 
singular perturbative solution of this equation at the steady state in the 
generating function representation. After showing the failure of all naive 
perturbative expansions, we obtain, to zeroth order of our scheme, an equa- 
tion whose steady-state solution reduces to the exponential of the Landau-  
Ginzburg functional. This establishes the connection between master-equa- 
tion and renormalization-group approaches. In Section 4 we discuss higher 
approximations as well as the asymmetric (nonzero-"field") bifurcation case. 
In Section 5 we consider a model involving bifurcation of a nontrivial branch 
from a trivial (2 = 0) reference state. We show that this system cannot admit 
a nonequilibrium phase transition, due to the existence of an absorbing state. 
Some comments on the implications of the results are made in Section 6. 
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2. M U L T I V A R I A T E  M A S T E R  E Q U A T I O N  FOR THE C U S P  
B I F U R C A T I O N .  S C H L O G L ' S  M O D E L  

The simplest bifurcation leading to multiple steady states without 
symmetry breaking is in systems involving one concentration variable and a 
cubic rate law. This is best illustrated by the following chemical model due to 
Schl6gl (17): 

kl 
A + 2 X <  >3X 

k~ (2.1) 
k3 

X(- -?B 
k4 

where A, B are controlled from outside and, in general, 2A/fB ~ k2k4/klka. 
As is well known, the behavior of a cubic system is controlled by two param- 
eters. Hence, on defining the scaled quantities 

2r = X / A V  = (1 + O r ) ,  k~A/k2 = 3 AV, ka/k2 = (3 + 8) 

kr = (1 + 3')AV, ~ = k2t, ~ = ~x /k2  
(2.2) 

where A and B are the numbers of particles of A and B and & V is the size of 
the spatial cell centered on r, we may write the following rate equation for 
model (2.1): 

~36,/~-r = - o r  3 - 36, + (3' - 3) + ~ V26, (2,3) 

As is well known, for natural boundary conditions (infinite systems or periodic 
geometry), the diffusion term does not add new stable solutions to Eq. (2.3) 
in the vicinity of the cusp bifurcation 3 = 8' = 0. Thus, as 3, 8' move to 
negative values along the line 3 = 3', a bifurcation of uniform steady-state 

solutions 5, = 6~ = +_ ~/-----g takes place from the trivial solution (70 --- 0. 
If, on the other hand, one moves into the multiple steady-state region for 
3 # 3', one encounters the phenomenon of hysteresis. 

We now want to analyze the behavior of fluctuations associated with the 
above-mentioned transition phenomena. To this end, we write Eq. (1.2) 
directly in the generating function representation 

F({sr}, t) = ~ ~ Sx ,P({X,} ,  t) (2.4) 
(Xr} r 

Taking into account the extensivity of the transition probabilities and setting 
Dx = D we obtain, at the steady state 

(1 -- S r ) S r 2 (  1 ~aF 1 ~2F] 
r AV2 ~Sra 3 AV~Sr2 ] 

+ ~ ( 1 -  Sr)[(3 + 3)OF ] r ~ - (1 + 3')AVF 

D OF 
+ ~ ( S r + ~  - S , ) - ~  = 0 (2.5) 
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As is well known, F generates all moments of the probability distribution, 
including the average value, which satisfies the macroscopic rate equation 
(2.3), at least before bifurcation, where the system admits a single steady 
state. In order to sort out the information pertaining more specifically to the 
fluctuations, it will be convenient to extract from Eq. (2.5) the macroscopic 
part 3 by setting 

F = ~ (exp[A Vs -1)]}~b (2.6a) 

In much of this paper we will be interested in the symmetric bifurcation case, 
= 3'. As is seen from Eqs. (2.2) and (2.3), one has then ~ = 1 and Eq. 

(2.6a) becomes 

Substituting into Eq. (2.5), we obtain 

(1 - s~)s~ ~ \ - 2  A r C  - 3 ~ + Av~ ~ s ~ !  
r 

+ ~,(~  - s~) 2 A v ~  + (3 + ~ ) - ~  

with 

~S~ ) 
(2.7) 

D~b 
I = o(1) (2.8) 

where the smallness parameter appearing in o(1) is the inverse of the volume 
A V(see also Section 3). Note the cancellation of the second derivative terms in 
this .equation and the transformation of the diffusion operator into a form 
displaying the factor (1 - S~) in front of  the first derivatives. 

3. S I N G U L A R  P E R T U R B A T I O N  A N A L Y S I S  

In order to analyze Eq. (2.7) systematically, we need some asymptotic 
element enabling us to set up a perturbative procedure. At first sight, one is 
struck by the absence of any perturbation parameter in the problem. Indeed, 
the distance 8 from the bifurcation point appears in a very implicit manner. 
Moreover, although the diffusion rate D is typically much larger than the 
chemical rate constants, it turns out that it cannot be used as a perturbation 

a Note that this implies the validity of the law of large numbers for the reaction- 
diffusion system. This point was recently investigated in Ref. 18a. 



500 G. Nicolis and M. Malek-Mansour  

parameter,  since it leads to expansions which diverge term by term in the 
thermodynamic limit. (22) 

An answer to this difficulty can be found by anticipating the existence of 
a nonequilibrium transition. In this case, because of the long-range character 
of the correlations between spatial cells, we expect to be able to augment 
AV until it reaches macroscopic dimensions. (~9) Hence, near the bifurcation 
point we set 

E = 1/AV<< 1 with ~ = ~b3~ + ... (3.1) 

The second asymptotic element is found by realizing that all macroscopically 
relevant information refers to the vicinity of  (St = 1}. This information is 
expected to be closer to the solutions of the phenomenological equation (2.3) 
the larger the AV. Moreover, it is reasonable to require the thermodynamic 
limit to be taken before the limit {St -+ 1}. 4 Hence, we scale the deviation of 
Sr from 1 by a suitable power of E (to be determined later; see Ref. 6): 

Sr = 1 + E~:~, 0 < a < 1 (3.2a) 

The physical meaning of this scaling can be realized if one starts from 
definition (2.4) and replaces, by virtue of Eq. (3.1), the sum over {Xr} by an 
integral using the Euler-McLaurin asymptotic formula. One can then show 
that Eq. (3.2a) in conjunction with Eq. (2.6a) amounts to studying the 
probability distribution of the scaled variable (8) 

X -  A V 2  
z =  )TAV ~ (3.2b) 

Equation (2.7) becomes 

l"  

er 

~ 
+ ~ f, = 0 (3.3) 

To proceed further we need to scale the diffusion term. This scaling can easily 
be understood if one realizes that in actual fact, the double sum ~rx in Eq. 
(3.3) displays the eigenvalues ,~ of  the diffusion operator in the cell representa- 

a If the two limits are taken simultaneously one obtains a probability distribution in the 
form of a delta function centered on the deterministic stable state. (6) 
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tion. Among these, one has t he "  low-lying" ones representing long-wavelength 
excitations, which are inversely proportional to the square of the number of 
cellsJ 2~ For convenience we absorb this smallness factor into the proportion- 
ality coefficient D, Eq. (3.3). The overall effect of diffusion can now be scaled 
as follows: 

D = eYD1 + -.. (3.4) 

On inspecting Eqs. (3.1)-(3.4) we can see how different regimes corresponding 
to different choices of a, b , f c a n  be realized. Thus, for 

f > max{b, 2(1 - a), 2a - 1}, b = 2(1 - a) = 2a - 1 (3.5a) 

one obtains the mean-field theory, (6~ which neglects spatial fluctuations, to 
zeroth order of the perturbation analysis. On the other hand, for 

f < min{b, 2(1 - a), 2a - 1} (3.5b) 

one would have diffusion as the dominant part and chemical reactions as a 
"perturbat ion,"  as suggested some time ago by Van den Broeck e t  al.  (2~ 

Finally, the choice 2(1 - a) > 2a - 1, or 

gives 

a < �88 and 2 a -  1 = b = f  (3.5c) 

0~:, 2-d ~x (~-~-~+x ~ ) ]  = e 2 ~ - ~  4~:r2~b (3.6) 

This yields the Gaussian approximation, as can be verified straightforwardly 
by switching to the cumulant generating function w: 

1 
~b = exp - w (3.7) 

We see therefore that the Gaussian is a legitimate representation of the system 
if a is small enough or, according to the second relation (3.5c), if the system 
is sufficiently far from the bifurcation point. This is compatible with the 
Ginzburg criterion familiar from the theory of phase transitions. (19) 

Now, the difficulty with the reasoning leading to Eqs. (3.5)-(3.7) is that 
sufficiently close to the bifurcation point, the higher order terms of the per- 
turbation expansion diverge, ~11,22~ at least for physically reasonable dimen- 
sionalities. One could try to get out of this difficulty by following the ideas of 
the theory of critical phenomena. (19) For  instance, one cannot exclude the 
possibility of a suitable partial resummation scheme which would regularize 
the perturbation series in the vicinity of some critical dimensionality de. In 
the absence of such a result, we shall adopt an alternative procedure. Namely, 
we will develop a singular perturbation which enables us to keep, to lowest 
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order in the expansion parameter E, both diffusion and chemical reaction 
including the highest derivative term c~a~b/~r a, which is missing in the 
Gaussian approximation, Eq. (3.6). According to Eq. (3.3), this corresponds 
to 

2(1 - a )  = 2 3 -  1 = b  = f  or a = � 8 8  and b = f = � 8 9  (3.8) 

Calling ~b (~ the lowest order approximation to r we obtain 
z ) l  (~ 

We now seek for "detailed balance" solutions of this equation, by identifying 
the coefficients of ~r on both sides. We obtain 

aar (~ + 31 ar (~ D1 N" / a~b(~ 8~b(~ 4{:~r (3. 10) 
aar a a~:r 2d x L, ~a--~+x ~ ] 

To solve this equation we perform a Mellin-Fourier transformS: 

f[f[ [ ~b({(,}) . . . .  (dOt} exp (r0, R({0,}) (3.11) 
co co 

where it is assumed that R goes to zero faster than exponentially when I0,] -+ 
oo. We obtain 

~R (~ D1 ~x 
- 4 - ~ -  = (er a + 810r)R (~ - --2d (0,+x - O,)R (~ (3.12) 

The solution of Eq. (3.12) is (up to a normalization factor Z-*)  

R ( ~  3 1 - ~ + - ~ + ~ - j ~ x ( 0 , + , - 0 ,  ). (3.13) 

It will be noticed that in the continuum limit, Eq. (3.13) displays the exponen- 
tial of  the Landau-Ginzburg functional (~s'19) expressed in terms of the fluctu- 
ations around the deterministic value 2, = 1. We have therefore established 
in this way the connection between master equations and the theory of 
critical phenomena. 

From Eqs. (3.11) and (3.13) one can generate successive moments of the 
probability distribution. For instance, the doublet concentration correlation 
function 

G(r, r') = e 2 a2--------~ (st=l, = ~2(1-a) 02r [ (3.14) aSr c~Sr, a~:r ~:~, ~r=o~ 

becomes 

FF G(r, r') = {dOt} ~2(1- a)0,0r,, R(O)({0r}) 
o o " "  co 

s Note the analogy with the Poisson representation developed by Gardiner and Chatur- 
vedi(11). 
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Introducing the reduced variables kr 
of 5, D from Eq. (3.4), we obtain 

G(r, r') = Z - 1  ... 
co oo 

= 0rd/* and eliminating 31, D1 in favor 

1 
{dkr} krkr ,  e x p (  - ~ ~ ,  ~ -1 

o ]) 
+ - ( 3 . 1 5 )  

7k 

Note that ~e-1 is going to be transformed, in the continuum limit, into the 
P 

space integral over the entire system. 
The relation between Eqs. (3.15) and (3.13) further substantiates the 

physical meaning of the scaling introduced in Eq. (3.2a). Indeed, applying 
Eq. (3.2b) for a = 3/4 [cf. Eq. (3.8)1, we have 

A V ( x  -- 2) x -- 2 -1/~ (3.16) 
z = 2AV~ = - - - f -  c 

which is precisely the relation between the (intensive) variable k and the 
(scaled) variable 0. 

Equation (3.15) can now be studied by renormalization group meth- 
ods (la.19) as applied to the Ising model. 6 As is well known, the result of the 
analysis is the existence of a critical dimensionality dc = 4, and the concomi- 
tant appearance of nonclassical exponents describing the divergence of 
variances, correlation functions, and so forth. 

From the standpoint of probability theory, the results derived in the 
present section show that in the presence of diffusion, the asymptotic limit of 
the stochastic process described by the multivariate master equation is not 
given by the Gaussian distribution, even before (but close to) the bifurcation 
point. According to renormalization group theory, (19) the latter can only hold 
when the dimensionality is higher than four. The situation is therefore radically 
different from the behavior of birth and death processes and many other 
familiar processes involving a finite number of variables, ash) On the other 
hand, the law of large numbers appears to be secured whatever the dimension- 
ality of space, at least for any finite (but possibly very long) value of time. (1~ 

4. H I G H E R  O R D E R  A P P R O X I M A T I O N S .  T H E  N O N Z E R O  
" F I E L D "  CASE,  ~ r 3' 

One of  the advantages of the master equation approach and of the 
perturbative method developed in Section 3 is the generation in a natural 

6 It should be pointed out that in our analysis (see also Ref. 13) the quartic term arises in 
a natural way from the nonlinearities of the system. This is to be contrasted with certain 
situations encountered in critical phenomena, where this term is merely introduced in 
order to regularize the properties of an otherwise unnormalizable probability distribu- 
tion. 
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way of the corrections to Eqs. (3.13), (3.15). Such contributions are essential 
for analyzing questions pertaining to the behavior beyond the bifurcation 
point, such as the coexistence line between simultaneously stable steady 
states, metastability, spinodal decomposition, and so forth. In this section we 
assume that the corrections to the dominant terms can be obtained through 
the power series 

= ~81 + ~2~2 + "", D =- erD1 + ~2ID 2 + ... 

This looks a priori very restrictive. However, as frequently done in singular 
perturbation schemes, it will be imposed on the equation. If the latter cannot 
accept solutions of this form, the difficulty will show up by the impossibility 
of satisfying the appropriate solvability conditions. 

Actually, it turns out that the best way of discussing higher order terms 
is in terms of the cumulant generating function, Eq. (3.7). (2a) To preserve 
continuity, however, we briefly outline here the higher order terms of the 
perturbation series in the ~b representation adopted in Section 3. On inspecting 
Eq. (3.3), we see that there are two sources of correction. One arises from 
additional E~:~ factors in the coefficients of terms that were retained in the 
dominant order. Another arises from the factor Ea~r 2 8~/8~.  which was 
absent in the dominant order. Remembering that a -- 3/4 and that in the 
analysis of Section 3 we had stopped at order e 1I~, we see that we may set 

= 4(o) + el/~(1) + ... (4.1) 

where ~b (~ is given by Eqs. (3.11) and (3.13) and ~b (~) satisfies the equation 

[ (~3~(1) ~(1) D1 ~/(1, ~j(l!X~ ] 
~rL~-~r3 + 81 ~ 2d~\~--~r+x ~ r ] - - 4 ~  ~:'2q9(1) 

84~(o) 
P 

(4.2) 

Setting 

02 OrR (~ (4.3) = 6 ~ ~--~ 

R (1) = R(~ (4.4) 

As in Section 3, we are looking for symmetric solutions of this equation. 
One can easily check that this rules out the detailed balance solutions corre- 
sponding to deletion of the sum over r in Eq. (4.2) and to the cancellation 
of one ~r factor. To analyze the full equation (4.2) we again perform a Mellin- 
Fourier transform, Eq. (3.11). We obtain 
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and performing explicitly the differentiations on the right-hand side of Eq. 
(4.3), we get the more explicit form 

~ { 4  ~2E [Ora+810r D1 

= 3~r  {10r(a0r2+ 81+  D 1 ) + ( 0 r a +  810,) 

8 - T d  

Since the right-hand side is odd in 0r, this equation admits odd solutions, 

The coefficients a{r} can be computed straightforwardly by inserting into Eq. 
(4.5) and by identifying equal powers of 0,. For c~ r this gives 

a~ = -3(3  + D~/81) (4.7) 

The ratio D1/31 remains undetermined at this stage. To compute it one should 
introduce the solvability conditions for Eq. (4.5). 

Keeping in mind Eqs. (4.1), (4.4), (4.6), and (4.7) as well as the scaling 
leading to Eq. (3.15), we obtain 

~/(1>/~(0)  m Ellaz0r -t- . . . .  e l / 2 k  r + ... with k,. ~ O(1) 

Thus, ~b (~) is indeed a correction to the dominant order. No divergence is 
possible in our procedure unless 81 = 0 accidentally, in which case the calcu- 
lation must be pushed to the next order. 

The correction to the Landau-Ginzburg functional just worked out also 
shows that the second moment of the probability distribution--including the 
correlation function--is given correctly by the dominant approximation, Eq. 
(3.15). The situation may be different for higher moments. A particularly 
striking example is the third-order variance (SXa), or, in the notation of 
Section 3, (kra). Within the framework of Section 3, (k,  a) = 0, since R (~ is 
even in kr. On the other hand, R {~) contains odd terms and gives thus a non- 
vanishing contribution to (kr3). Within the framework of our formalism this 
quantity--and in fact a whole set of higher moments and correlation func- 
t i ons -can  be computed quite straightforwardly. The main point to realize is 
that {~:, = 0} is an ordinary point of the differential equation (3.3). Hence, 
on differentiating successively both sides in $, and then setting {~, = 0} one 
can evaluate (~a~b/a~:ra)l~,= 0), etc. Let us outline the procedure for the third- 
order variance. We obtain from Eq. (3.3) 

ar 
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Now from Eq. (2.8) 
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~-~ {~r=0 = o(1) 

(4.10) 

~, = 1 + d h  (4.11)  

in addition to Eqs. (3.1), (3.2), (3.4). We thus obtain, instead of Eq. (3.3), 

__ ~:r[ 1 + O(ea)][,2(l_e)c33~b 3d_~+o h 02r (3,2oh 2 + 31,~ ) O~b] 
, o ~  ~ + ~ + 

[( + ~' - ~:~[2,~r + O(,2~)] 3 - 1 + e2~ 
r 

] -' ( - )  - ( 2 , , + o  + 3 ,gh)r  + # = 0 
r~  \ u ~ r  +9~ 

(4.12) 

The dominant part of this equation can be analyzed as in Section 3. 
Setting a = k, b = f = �89 and g = �88 and adopting the detailed balance 

~d~  ( 1 -  S,)(3S~+x ~-~r) = 0  

We now consider the case of "weak field" and set 

Hence, from Eq. (4.8) 

03r / = o(1) 
c3~3 {~= o~ 

or, from Eq. (2.6b) 
((3X) 3) = 3((3X) 2) - 2 ( X )  + o(1) (4.9) 

We have therefore the explicit expression of the third-order variance in terms 
of quantities that can be evaluated from the theory presented in Section 3. 

We close this section with some comments concerning the approach to the 
bifurcation point along the nonsymmetric path, 3 # S'. In this case fir # 1, 
and one has to use Eq. (2.6a) instead of (2.6b). Then Eq. (2.7) becomes 

Z ( 1 -  S,)S,2[ 1 03~b + 3 ( 2 , -  1) ~2~b 0~b 'AV 2 0Sr 3 ~ + (32r 2 - 6gr) ,, dS~ 

A V (Xr 3 - 3s162 + 

+ ~ (1 - S,) (3 + ~)~-~ + AV[2,(3 + 3) - (1 + 3')]~b 
]p 
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solution, we obtain 

~a~b(~ ~2~b(~ ~b (~ D~ 
+ 3h ~---~ 2 + (3, + 3h 2) ~ r  2-d ~ (~b(~ ~b(~ \ eserx ff~-~] = 4~r~b (0) 

(4.13) 

We see that the difference between this relation and Eq. (3.10) describing the 
symmetric bifurcation case is the presence of a second derivative term and the 
modification of the coefficient of the first derivative term. 

Equation (4.13) can again be solved by performing a Mellin-Fourier 
transform. We obtain in this way 

R (~ oc exp - ~  (c~ + 3h ~) + hOra + + -8-'d ~x (0~+x - 0~) 2 ~ 

(4.14) 

Note the presence of the cubic term in the exponential. Such terms are known 
to arise in the theory of critical phenomena when an external field is present, 
or when the system has already entered the condensed phaseJ ~9~ 

5. S Y S T E M  W I T H  Q U A D R A T I C  NONLINEARIT IES .  THE 
A B S O R B I N G  STATE CASE 

In this section we briefly examine the stochastic aspects of bifurcation 
phenomena in systems involving one concentration variable and a quadratic 
rate law. A good illustration is a bimolecular model due again to Sch16gl~17): 

A + X k2-+ 2X 

B + X ~ +  C (5.1) 

where A, B, C are controlled from outside. Setting 

kaB/k2 = fi A V  
k i A / k 2  = (fi + 3 ) A V  (5.2) 
k4C/k2 = c A V ,  y~ = X / A V ,  -r = k2t 

we obtain the phenomenological rate equation 

d~/d-c = _ y 2  + 3Y~ + c (5.3) 

whose only physically acceptable steady-state solution is 

s = [3 + (32 + 4c)Z/21/2 for cva 0 (5.4a) 

On the other hand, if c = 0 but 3 /> 0 we have two solutions: 

~7o = 0 (unstable) 
(5.4b) 

2+ = ~ (stable) 

3 = 0 is therefore a bifurcation point. 
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In the generating function representation, the multivariate master equa- 
t ion at the steady state reads 

~ ( 1 ,  - S , )  SrAvos~ + [ ( f l +  3)(1 - S , )  - 81~0F _ cAVF 

D (OF OF) = 0  (5.5) 

Introducing,  as in Section 3, the scaling 

E =  1/AV<< 1, S , =  1 + e ~ , ,  0 < a < 1 (5.6a) 

as well as the auxiliary funct ion ~b, th rough 

F = ~bl-- I exp[AV2(S~ - 1)l (5.6b) 
lg 

we obtain the detailed balance solution: 

(1 + ~=~r)d -~ O=~b ~=(2~ 8) a~,b + [2x - s + - # -  ~'1 b-~, 0~, 2 

_ ,2~-1(fi)7 _ e)~,~b - 2--d ~ + x  ~ = 0 (5.7) 

Two cases can now be envisaged. 

5.1. c # O  

For  this case )7 # 0. For  0 < a < 1 [see Eq. (3.2)], one has a nontrivial  
solution for  a = �89 in which case 

o~o, D [0r `~ 04,~~ 
(2)7 - 8) --~-f- - (fig - c)~:,~b (~ - 2--d~ \~g ,+x  -~-~, ] = 0 (5.8) 

Performing a Mel l in-Four ie r  t ransform,  Eq. (3.11), we easily get 

R ( ~ 1 7 6  fl)7-c~ - -O"2+ ~---d~x (O'+x 
We find therefore a mult i -Gaussian distribution. This is natural,  since for  
e # 0 the system does not  undergo bifurcation. 

5.2.  c = O  

In this case )7+ = 8 and )70 = 0. Looking  first at Eq. (5.5), we see that  the 
te rm in F i s  absent. Hence this equat ion admits the exact, properly normalized 
solution 

r = 1 (5.10) 
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This reflects the existence of an absorbing state 2o -- 0 in the system. For  any 
> 0 one would expect uniqueness of solutions, and hence (5.10) should be 

the only solution. What  happens in the thermodynamic limit E -+ 0 ? Let us 
analyze this question by " fo rc ing"  the system to admit a solution centered on 
)7+ for all 3 > 0 as 3 -+ 0. To follow this latter limit we also set 

6 = ~b61 + . . - ,  D = erD1 + "-- (5.11) 

The dominant terms of Eq. (5.7) are then contained in the expression 

~-~ ~2~ ~r ~ 2 ~ - ~ + ~ : r ~  e~:~ + (8~ ~ _ ~ , ) ~  - 

2dD~ ~ ~ ?-?; = 0 (5.12) 

The behavior of  the solutions of  this equation crucially depends upon the 
way in which e ~ goes to zero relative to e~, that is, ultimately, on the distance 
from the bifurcation point. Thus, we distinguish three subcases: 

(i) b < a. The situation is then identical to the case of Section 5.1, and is 
described by the Gaussian approximation. 

(ii) b = a. For  b = a = f = �89 all terms in (5.12) are of the same order. 
Switching to Mellin-Fourier space, we obtain 

~R(O~ 
(o~ 2 + ~lor + ~)R (~ +/3(o ,  + ~) eo, 

Setting 

In  R (~ = - - -  

we obtain 

2d (0r+ x -- O,)R (~ = 0 

(5.13) 

1 
213 ~ 0 " 2 -  Z, ln(0~ + 61) + E 

9E D1 ~ (0~+ x _ 0~) 
~(o~+ 80~o~ 2d 

Now, one can easily check that this set of equations is self-contradictory. 
Indeed, evaluating the mixed derivatives of  E, we get 

~2E/c~0,+x 90, 0r+x + 61 
c~2E/O0, ~0r+x 0r + 61 -r 1 (5.14) 

We conclude therefore that subcase (ii) has to be dismissed, at least within 
the framework of detailed balanced solutions. 

(iii) b > a. This means that  we are very close to the bifurcation point. 
In Eq. (5.12) the term 31e b can then be neglected. I f  a /> �89 one obtains, to 
zeroth order in the perturbation expansion, the properly normalized solution 
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~b = 1. This reflects the existence of the absorbing boundary, as pointed out 
earlier in this subsection. For a < �89 one may have a nonconstant solution for 
a = f = b =  I - a :  

-/3~:, - 38xf,~b (o~ - ~ = 0 (5.15) 

Switching to Mellin-Fourier space, we obtain 

~R (~ D I ~  (0rx -- 0r)R (~ = 0 3 R(~ 0 , +  81) OOr 2d 

As in subcase (ii), we seek for a solution of the form 

l n R  (~ - ~ l n ( 0 r  + 31) + v 
F 

in which case E satisfies the relation 

~Z D1 
/3(0, + 81) ~ = - 2--d E (0r+ x - 0r) 

X 

As explained above, this system of equations is self-contradictory. We there- 
fore reach the conclusion that sufficiently close to the bifurcation point, the 
system cannot admit a detailed balance steady-state solution around the non- 
trivial state 2+. Thus, the absorbing state F = 1 [cf. Eq. (5.10)] remains the 
only acceptable solution. In other words, any sort of critical behavior related 
to the approach to the bifurcation point is to be ruled out. A similar conclu- 
sion has been reached in the renormalization group analysis by Dewel 
et al. (*a~ 

6. C O N C L U D I N G  R E M A R K S  

In this paper we determined the conditions under which a jump process 
characteristic of the behavior of a reaction-diffusion system reduces, in the 
vicinity of  a bifurcation point, to a description in terms of the Landau-  
Ginzburg functional familiar from renormalization group analysis of phase 
transitions. Our derivation shows that this reduction is by no means auto- 
matic. Rather, it appears to require an asymptotic element (AV large, 8 
small) as well as appropriate types of nonlinearities. In particular, for a 
quadratic nonlinearity involving an absorbing state we arrived at the con- 
clusion that sufficiently close to the bifurcation point the system was unable to 
show critical behavior. 

We believe that the perturbative method we set up could prove useful for 
other purposes as well. In Section 4 we outlined briefly some applications 
related to higher order approximations. Two further problems, which remain 
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largely unexplored because of considerable technical difficulties, can also be 
considered within our formalism. One is time-dependent behavior, in connec- 
tion with the evolution from an initial state close to an unstable solution into 
a final stable steady state. (2~'25) The other is symmetry-breaking bifurca- 
tions. (1~) In the latter, of course, additional difficulties are to be expected, 
arising f rom the presence of at least two coupled concentration variables. 

In much of our analysis, we were led to consider steady-state solutions 
of the detailed balance type. A glance at the general multivariate master 
equation [Eq. (1.2), (2.5), or (5.5)] suffices to convince oneself that in the 
presence of diffusion such solutions should not necessarily exist in the most 
general case. Already in Section 5 we were led to contradictions after assuming 
their validity. This is natural after all: since the different spatial cells are 
coupled by diffusion, there is a flow of probability between them which tends 
to compromise the cancellation between " f o r w a r d "  and " b a c k w a r d "  pro- 
cesses in each individual cell. 

Our analysis sheds some light on this question by showing that the 
passage to detailed balance solutions is accompanied by the existence of an 
asymptotic  element (E << 1, 3 << 1) in the problem. In a way, because AV can 
be taken large for 3 small, the spatial cells are loosely coupled through all 
degrees of  freedom except  the ones that  undergo bifurcation (the order 
parameter;  see also comments  by Graham(26).) Thus, the problem reduces 
effectively to one involving long-range fluctuations of  a single degree of free- 
dom. The latter remain of course coupled, but their coupling keeps no track of 
the initial partition of the system into small spatial cells. 
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